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Abstract

To execute a shared memory program efficiently, we have
to manage memory consistency with low overheads, and
have to utilize communication bandwidth of the platform
as much as possible. A software distributed shared mem-
ory (DSM) can solve these problems via proper support by
an optimizing compiler. The optimizing compiler can de-
tect shared write operations, using interprocedural points-
to analysis. It also coalesces shared write commitments
onto contiguous regions, and removes redundant write com-
mitments, using interprocedural redundancy elimination. A
page-based target software DSM system can utilize commu-
nication bandwidth, owing to coalescing optimization. We
have implemented the above optimizing compiler and a run-
time software DSM on AP1000+. We have obtained a high
speed-up ratio with the SPLASH-2 benchmark suite. The
result shows that using an optimizing compiler to assist a
software DSM is a promising approach to obtain a good
performance. It also shows that the appropriate protocol
selection at a write commitment is an effective optimization.

1. Introduction

Applications using software distributed shared memory
(DSM) can run without troubles of unnecessary memory
copy and address translation which happen with the in-
spector/executor mechanism[22]. Most of existing software
DSM systems are designed on the assumption of using se-
quential compilers[23, 20, 19]. An executable object made
by a sequential compiler only issues a shared memory ac-
cess as the ordinary memory access(load/store). To utilize
bandwidth, a runtime system has to buffer the remote mem-
ory access. There is another approach where a programmer
can specify optimal granularity, protocol, and association
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between synchronization and shared data[3, 30]. However,
with this approach, existing shared memory applications re-
quire rewriting.

Our idea is that an optimizing compiler directly analy-
ses shared memory source programs, and optimizes com-
munication and consistency management for software DSM
execution[28]. Our target is a page-based software DSM,
asymmetric distributed shared memory (ADSM)[26, 25].
ADSM uses a virtual memory mechanism for shared read,
and uses explicit user-level consistency management code
sequences for shared write. This enables static optimization
of shared write operations. Static optimizing information
about them can reduce the overhead of the runtime system.
Shasta[29] is another software DSM system assuming op-
timizing compiler support. Since Shasta compiler analyzes
objects generated by sequential compilers, it only performs
limited local optimizations. Our compiler analyzes a source
program directly. Therefore, it performs array data-flow
analysis interprocedurally.

Here we have to solve the following three problems in
order to show that our approach is effective. First, the
compiler must perform sufficient optimization in reasonable
compilation time. We have applied interprocedural points-
to analysis[14, 31], and implemented interprocedural write
set calculation, to detect and optimize shared write opera-
tions. We have found out that the above powerful analysis
is done in reasonable time. Second, the runtime system also
must work efficiently. We had been using a history-based
runtime system of lazy release consistency[28]. But when
the compiler can not optimize, the system introduces a large
runtime overhead and causes the growth of synchronization
costs. Therefore, we have implemented a new page-based
runtime system with delayed invalidate release consistency
(DIRC) model[12] to overcome these problems. We have
made sure that the new system is more efficient than the
history-based runtime system. Third, we have to provide
an interface such that users can give information which the
compiler can not extract statically. Memory access patterns
of irregular applications depend on input parameters. It is



difficult for a compiler to optimize copy management pro-
tocols statically. We have examined the effect of manual
protocol selection on the bottleneck shared write operations
of the program.

We have evaluated the performances with the SPLASH-
2 benchmark suite[32]. SPLASH-2 is not only the most
frequently used benchmark to evaluate shared memory sys-
tems, but also a benchmark suite with in detailed algorith-
mic information about each program. We have manually
optimized shared write protocols using these descriptions.
We do not consider SPLASH-2 as “dusty deck”. Our target
is to investigate what information from a user or a compiler
is required for the efficient execution about shared memory
programs on software DSM.

Section 2 describes a process of compilation and opti-
mization. Section 3 describes the implementation of the
runtime software DSM. Section 4 describes performance
evaluation with SPLASH-2. Section 5 describes related
work about a combination of optimizing compiler and soft-
ware DSM. Section 6 gives a summary.

2. Compilation Process

Figure 1 describes the overall compilation process. The
input is a shared memory program written in C extended
with PARMACS[4]. PARMACS provides the primitives
for task creation, shared memory allocation, and synchro-
nization (barrier, lock, and pause). The consistency of
shared memory follows lazy release consistency (LRC)
model[20]. Our compiler inserts consistency management
code sequences for software DSM into a given shared mem-
ory program. The backend sequential compiler compiles
the instrumented source program and links it with a runtime
library.

To inform the runtime system that a write happened onto
a contiguous shared block, we use a pair found by the ini-
tial address and the size of of the block. We call this pair
a (shared) write commitment. Besides the start address and
the size, a write commitment also requires the written con-
tents of the block. Therefore, we place a write commitment
after the corresponding shared write operations. The single
write commitment can represent a lot of shared writes onto
a large contiguous region. When there are succeeding write
commitments with the same parameters, we can eliminate
them but the last one.

2.1. Shared Write Detection

The goal of our optimizing compiler is to insert valid
write commitments and to decrease the number of write
commitments as much as possible. First we have to enu-
merate all shared memory access in a given shared memory
program. Since the input program is written in C, a shared

address may be contained in a pointer variable and may be
passed across procedure calls.

We have applied interprocedural points-to analysis[14,
31] to shared write detection. Interprocedural points-to
analysis calculates symbolic locations where variables may
point to. Variables and heap locations are represented with
a location set, a tuple of a symbolic base address, an off-
set, and a stride. The compiler interprocedurally calculates
points-to relations among location sets using a depth-first
traversal of the call graph. We track the return values of
shared memory allocation primitive (GMALLOC). We in-
sert a write commitment after a write operation using shared
address values.

We adopted interprocedural points-to analysis because of
the following merits:

� succeeding optimization passes can perform code mo-
tion using pointer information, and

� precise shared pointer information can decrease the
costs of the redundancy elimination pass.

Points-to analysis represents all variables as memory lo-
cations. This is a conservative assumption in C. When an
input program contains unions or type-castings, they may
generate false alias information, which takes many itera-
tions to converge. We assume that an input program is
type-safe about pointer values, that is pointer values are not
conveyed through non-pointer locations. In points-to anal-
ysis, we only record pointer assignments into pointer type
locations. This assumption prevents generating false alias
relations in a program with complex structures.

2.2. Redundancy Elimination

In release consistency model, a shared write is not trans-
mitted to other nodes until the node which had issued the
shared write reaches a synchronization. Therefore, it is
valid that we place a write commitment everywhere from
the corresponding shared write to the first synchronization
thereafter. We use this flexibility to remove redundant write
commitments.

For example, let us look the following code sequence
from LU:

a[ii][jj] = ((double) lrand48())/MAXRAND;
if (i == j)

a[ii][jj] *= 10;

Suppose thata[ii][jj] is shared. It is valid that we in-
sert write commitments after both assignments. However,
if we delay the first write commitment after the conditional,
the write commitment within the conditional is redundant.
When we denote a write commitment asWC,
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Figure 1. Overall compilation process

a[ii][jj] = ((double) lrand48())/MAXRAND;
if (i == j)

a[ii][jj] *= 10;
WC (&a[ii][jj], 1);

Note that this holds if the order between the assignment and
the conditional is opposite.

This optimization can be formalized as redundancy
elimination[8, 27] of write commitment. Here we repre-
sent a statement in a procedure asi. We can consider that
i is a node of a control flow graph (CFG) of the procedure.
For simplicity, we fix a write commitment with the same ad-
dress and the same size. From the result of points-to anal-
ysis, we obtain the following logical constants about each
statementi:

COMP(i) the statementi issues the shared write

TRANS(i) the statementi propagates information
about the shared write

TRANS(i) is false when the statementi is a synchronization
primitive or the statementi modifies the parameters of the
write commitment. We can calculate the following logical
dataflow variables from these constants:

Availability In all paths which precede the statementi, the
shared write is issued

Anticipatability In all paths which succeed the statement
i, the shared write is issued

To minimize the number of write commitments, we place
write commitments only where,

� the shared write is available,

� the shared write is not available in one of the succeed-
ing paths, and

� the shared write is not anticipatable.

We represent availability before and after execution of the
statementi as AVIN(i) and AVOUT(i). Similarly, we
represent anticipatability as ANTIN(i) and ANTOUT(i).
INSERT(i) is a variable which means we actually place the
write commitment after the statementi. Variables are cal-
culated under dataflow equations in Figure 2. Primitives
pred(i) and succ(i) represent sets of statements preceding
and succeeding the statementi.

AVIN (i) = ∏
p2pred(i)

AVOUT(p)

AVOUT(i) = COMP(i) + TRANS(i) � AVIN (i)

ANTOUT(i) = ∏
s2succ(i)

ANTIN(s)

ANTIN(i) = COMP(i) + TRANS(i) � ANTOUT(i)

INSERT(i) = AVOUT(i) � :

 
∏

s2succ(i)

AVOUT(s)

!

�:ANTOUT(i)

Figure 2. Dataflow equation to remove redun-
dant write commitments

To compute interprocedurally, we reflect AVOUT at the
exit of the callee procedure to the COMP at the call site
of the caller procedure. When the availability of the callee
can not be propagated to the caller, we insert write commit-
ments at the exit of the callee. We call a procedure which
is called recursively or called through function pointers, as
open procedure[7]. An open procedure does not inform
availability to the call sites. Therefore, we can consider the
call graph is acyclic. The compiler simply calculates inter-
procedural availability with bottom-up traversal of the call
graph. If we want more precise elimination, the compiler
also can traverse the call graph in depth-first manner, which



is not implemented yet.

2.3. Merging Multiple Write Commitments

A write commitment can handle shared write operations
onto a contiguous region. For example, let us look the fol-
lowing code sequence in LU:

for (i = 0; i<n; i++)
a[i] += alpha * b[i];

Suppose thata is a shared pointer. Instead of inserting a
write commitment into the innermost loop, we can generate:

for (i = 0; i<n; i++)
a[i] += alpha * b[i];

WC (a, n);

This code generation has two merits. First, a consistency
management overhead is reduced because the write com-
mitment is hoisted out from the loop. Second, the runtime
system can utilize the size information for message vector-
ization.

To combine multiple write commitments, it is convenient
to represent a sequence of write commitments as(shared)
write set. A write setW = ( f ; s;C) is a tuple, such thatf is
a start address of a write commitment,s is a size, andC is
a set of inequalities which generate write commitments. In-
equalitiesC represent induction variables of enclosing loops
around the write commitment.

A dataflow variable takes a set of write sets. The logical
operations in the above dataflow equations are considered as
set operations. Just after points-to analysis, each write set
includes only one write commitment, i.e.,s= 1;C = /0. We
use interval analysis[9, 5] to calculate dataflow equations.
In interval analysis, CFG is represented hierarchically with
interval (i.e. loop) structures. When a summary of interval
is propagated outward, inequalities which represent induc-
tion variables are added toC.

We describe optimizing methods to combine multiple
write commitments using write set.

Coalescing This is applicable when write commitments
onto contiguous locations are issued in a loop. Sup-
pose a write setW = ( f (i); s;C(i)) and the induction
variablei has a increment valuec. If f (i+c)� f (i) = s,
we can replacei with the initial value ofi, multiply s
by the number of iterations, and remove inequalities
abouti from C. For the above example,

W = (&a[i]; 1; f0 � i < ng) ! W0 = (a;n; /0):

Coalescing is applicable when the index variable is
only continuous. For example, let us look the follow-
ing code sequence in Radix:

for (i=key_start; i<key_stop; i++) {
this_key = key_from[i] & bb;
this_key = this_key >> shiftnum;
tmp = rank_ff_mynum[this_key];
key_to[tmp] = key_from[i];
rank_ff_mynum[this_key]++;

} /* i */

Supposekey_to points to shared addresses. Vari-
ables rank_ff_mynum[this_key] are incre-
mented by one whenkey_to[tmp] is writ-
ten. Therefore, we can coalesce write com-
mitments using initial values and final values of
rank_ff_mynum[this_key] .

Fusion We can also merge write commitments originating
in different statements in the program. We represent
this operation as a binary operator “�”. For example,
let us look the following code sequence in FFT:

for (i = 0; i<n1; i++) {
x[2*i] /= N; x[2*i+1] /= N;

}

Supposex points to shared address,

W = (&x[2 � i]; 1; /0); W0 = (&x[2 � i + 1]; 1; /0);

W �W0 ! W00 = (&x[2 � i];2; /0)

Redundant index elimination When the start address of a
write commitment is a constant, we can delegate the
write commitment with the maximal size. If we can
detect the maximum, this index variable is redundant.
We can eliminate redundant indexes using Fourier-
Motzkin elimination[11]. Fourier-Motzkin elimina-
tion is also applicable to nonlinear but monotonous ex-
pressions. For example, in the following write set in
FFT,

W = (x;2 � 2q � (N=2q); f1 � q � Mg);

we can eliminateq, using monotonicity of 2q andQ �
(N=Q), and obtain

W ! W0 = (x; 4 � (N=2); /0):

The names coalescing and fusion come from the similarity
to loop transformations. When a dimension of inequalities
in C is decreased, the dimension of generated loop of write
commitments is decreased.

When the summary of an interval is computed, we ap-
ply coalescing and redundant index elimination to write
sets. Fusion is applied to the computation of set union in
dataflow equations. When a write set is propagated outward



from a loop without coalescing or index elimination, we add
inequalities about loop indexes intoC. This corresponds
to fission(or distribution) in loop transformations. Fission
does not reduce the number of issued write commitments
but improves memory access locality. Along dataflow com-
putation in interval analysis, the compiler repeatedly ap-
plies Fourier-Motzkin elimination to the expressions in in-
nermost loops. We usememorization[1] technique which
stores and reuses the results computed before.

3. Target Software DSM

We implemented a runtime library of ADSM on a Fu-
jitsu AP1000+. The AP1000+ has dedicated hardware
which executes remote block transfer operation (put/get
interface[18]). We assume that point-to-point message or-
der is preserved.

Formerly, we had been using a history-based runtime
system of lazy release consistency[28]. This implementa-
tion stores write commitments as a write history. When
a synchronization primitive is issued, the page contents
are written back to the page-home. This corresponds to a
software emulation of automatic update release consistency
(AURC)[19]. Diff based implementation compares whole
page contents[20]. History based implementation can avoid
this when the compiler successfully eliminates and coa-
lesces the write commitments. However, the following two
problems exist:

� When the compiler can not optimize, history manage-
ment introduces a large runtime overhead.

� We handle logical timestamps between each synchro-
nization like LRC and AURC. Frequent synchroniza-
tion causes long synchronization messages and the
growth of synchronization costs.

This time, we have implemented a new page-based
runtime system. The basic design is similar to that of
SoftFLASH[15] with delayed invalidate release consistency
(DIRC) model[12]. We use a write commitment for mes-
sage vectorization.

3.1. Basic Design

Shared memory is managed by pages. Each page has a
page-home node and the user can specify which it is. Each
node manages the following bit tables with the size of the
number of shared pages.

Valid bit table indicates that the page contents are valid.

Dirty bit table indicates that the node has written into the
page with the current synchronization interval[20].

Each node also manages the following bit table with the size
of the number of nodes.

Acknowledge table indicates that the node had written
into the page of the corresponding page-home node.

Synchronization tags of locks and pauses are handled by
specified synchronization-home(i.e., lock-home or pause-
home) nodes. Each lock and pause has its own dirty bit
table. We describe the behaviors of the runtime system for
each primitive.

When a write commitment is issued, the written memory
contents are sent to the page-home node with a put oper-
ation. The size parameter of the write commitment corre-
sponds to the length of the block transfer. The page-home
node is recorded in the acknowledge table.

At an acquire operation, the node receives the dirty bit
table from the lock-home processor. The obtained dirty bit
table is applied to the valid bit table. The size of synchro-
nization messages are limited by the dirty bit table size be-
cause the time information is not utilized at synchroniza-
tion. However, if a node acquires the same lock again, a
page may be invalidated even when the page is not written
between lock acquisitions.

In a release operation, the node sends the nodes recorded
in the acknowledge table and confirms that all sent mes-
sages have arrived to the destinations. Then, the node sends
the dirty bit table to the lock-home node.

When a page fault occurs, the page contents are copied
from the page-home by a get operation.

At a barrier operation, the following steps are executed:

1. Each node confirms whether all the preceding page-
home updates are completed.

2. All nodes send their own dirt bit tables to the master
node.

3. The master merges the sent dirty bit tables and broad-
casts the merged one.

4. All nodes invalidate their copies using the sent dirty bit
table.

5. Each node clears its dirty bit table and the dirty bit
table of synchronization tags which it manages.

Communications at page faults and write commitments
are handled asynchronously. Acquire and release oper-
ations are serialized by sending explicit messages to the
synchronization-home nodes. Currently we use CellOS on
AP1000+. CellOS does not provide a signal mechanism
to users. Therefore, shared memory accesses are not han-
dled by the virtual memory mechanism. But they are exe-
cuted by code sequences which check valid bit tables. The
optimizing compiler inserts this code sequence before each
shared memory access. The compiler also inserts message
polling[29].



3.2. Protocol Selection at Write Commitment

The above runtime system provides a write-invalidate
protocol. We can simulate two other protocols

By modifying behavior at a write commitment, we can
select two other protocols[26, 25] at each write commit-
ment.

Broadcast At a write commitment, the writing node sends
written contents to all nodes. The node does not set the
dirty bit table entry.

Home Only The writer updates the page-home without
making a copy. This is achieved by omitting the valid
bit table checking of the corresponding shared write.

The broadcast protocol can reduce the communication la-
tency and alleviate false sharing. Broadcast is also use-
ful to efficiently execute a program which is not properly
labeled[16]. At the release operation after broadcasting,
the sender node must wait for acknowledgments from all
nodes. Home only protocol can reduce page fault traffic at
fetch-on-write. The contents of the page and the state of the
valid bit table entry are temporarily inconsistent until the
succeeding synchronization. When a home only write and
ordinary page accesses occur in the same page, this may
cause incorrect page contents. We introduce thehome only
acknowledge tablewhich records the page-home node for
home only write commitments. When a page fault occurs,
the node checks this table and waits for an acknowledgment
from the page-home node.

To perform the protocol optimization, we have manually
specified the type of write commitments in the bottleneck
part of a generated source program. When we implement
the home only protocol using a virtual memory mechanism,
we have to explicitly check the valid bit table at conflicting
writes to avoid frequent page faults.

4. Performance Study with SPLASH-2

We used three kernels (LU-Contig, Radix, FFT) and
five applications (Barnes, Raytrace, Water-Nsq, Water-Sp,
Ocean) from SPLASH-2.

4.1. Compilation Time

At redundancy elimination, we calculated availability
with bottom up traversal of the call graph, and calculated
ancitipatability intraprocedurally. We show the compila-
tion time of each program in Figure 1. The compiler is
run on Sun SPARCstation 20 (with 50MHz SuperSPARC)
+ SunOS4.1.3. “Scalar dataflow” represents the time to
detect induction variables. Without type-safe assumption,
points-to analysis takes from 1.4 to 4.2 times longer time for

Table 2. Input problem size and sequential ex-
ecution time (in seconds)

program problem size sequential
LU-Contig 10242 doubles 115.67
Radix 1M integer keys 4.32
FFT 64K complex doubles 2.10
Barnes 16K bodies 54.68
Raytrace balls4, 1282 pixels 349.38
Water-Nsq 4096 molecules 800.08
Water-Sp 4096 molecules 88.37
Ocean 1302 ocean 7.09

programs with structures containing pointers (Barnes, Ray-
trace, and Water-Sp) and for a program with pointer casting
(Ocean).

4.2. Runtime System

We show the problem size of each program and the se-
quential execution time on one node. Each node of the
AP1000+ consists of 50MHz SuperSPARC (20KB I-cache
and 16KB D-cache) and 16MB memory. The nodes are
linked by 2D torus network whose bandwidth is 25MB/s per
link. The small problem size of Ocean is caused because of
the limit of physical memory size.

The page table checking is implemented by software. If
we use a virtual memory mechanism, there is no checking
overhead when the page is valid. Coalescing and redun-
dancy elimination are also applicable to the software page
table checking. We manually applied redundancy elimina-
tion to checking codes using a similar interprocedural algo-
rithm to that of write commitments. We selected 4KB page
size for kernels, and 1KB for applications. We used gcc
2.7.2 (the optimizing level is -O2) as the backend compiler.

We modified the source codes of FFT and Raytrace. The
transpose operation of the original FFT is written so that a
receiver reads the parts of the array. But their page-home
nodes are not receivers but senders. This causes a severe
false sharing. We rewrote the procedureTranspose so
that a sender writes to the page-home of receivers. In the
original Raytrace, lock acquisition for ray ID is a bottle-
neck for the execution. This ID is not used for any actual
computation. We removed this lock operation. For each
program, we specified a page-home and a synchronization-
home according to optimization hints of SPLASH-2. We
applied protocol optimization to Radix, FFT, Barnes, and
Raytrace.

In Figure 3, we show effects of compiler optimization
on 32 nodes execution. The left bar of each program is the



Table 1. Compilation time of SPLASH-2 (in seconds)

program number of type points-to analysis scalar write set
lines checking w/ assumption conservative dataflow calculation

LU-Contig 980 0.77 4.77 4.78 0.90 0.85
Radix 816 0.56 2.78 3.47 0.66 0.33
FFT 992 0.69 1.23 1.27 0.68 2.26
Barnes 3,052 6.44 16.69 25.31 3.28 1.31
Raytrace 10,910 33.23 18.38 71.26 4.06 2.84
Water-Nsq 2,080 1.64 6.05 6.17 2.44 1.04
Water-Sp 2,748 2.41 30.14 42.70 3.91 3.22
Ocean 4,847 10.70 207.46 897.04 22.84 21.20
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Figure 3. Effects of compiler optimization (executed on 32 nodes)

execution time without compiler optimization (base time).
The right bar is that with the optimization. The base run
of Radix and FFT use the protocol optimization. Execution
time is normalized by the base time. “Sync” means waiting
time for synchronization. “WC” means time for write com-
mitment. “PF” means waiting time for page fault. “Msg” is
message handling time for synchronization. “Task” is time
for the original computation. In LU-Contig, shared writes
into each block are coalesced into one write commitment.
In Radix, we can apply the previously described coalesc-
ing for a continuous variable. In FFT, a write commitment
is issued for each column of the block decomposed array.
Since LU-Contig, Radix, and FFT contain regular memory
accesses in the innermost loops, coalescing reduces from
60% to 90% the total execution time. A write commitment
in a innermost loop introduces an overhead of procedure
call and reduces memory access locality. Since these over-
heads are included in task time, optimization also reduces
task time. In Radix, the response time of page fault is im-

proved because the traffic of network is reduced by coalesc-
ing. In Barnes, the compiler coalesces the write commit-
ments for each record of the structure. Raytrace and Water-
Ns have high task ratio and the reduction of execution time
is less than 3%. In Ocean, overheads of synchronization and
page fault are dominant because of the small problem size.
The effect of optimization is confined to 17%.

FFT and Radix are challenging applications for a shared
memory system because they potentially require high com-
munication bandwidth because of false sharing[15]. We
show effects of protocol optimization to Radix and FFT
in Figure 4. In Radix, write operations for the sorted ar-
ray cause severe false sharing. Since all of the contents
of the target array are written at the previous iteration, this
traffic can not be reduced by the diff mechanism of LRC.
We selected a home only protocol for this write operation.
We also selected a broadcast protocol for the arrayradix
which is used by all nodes. The left figure shows speedup
ratio of Radix. “w/o BC”, “w/o CO”, and “w/o HO” re-
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Figure 4. Effects of protocol optimization to Radix and FFT

spectively mean executions without the broadcast protocol,
coalescing, and the home only protocol. Though write com-
mitments in the innermost loop cause a large overhead, this
part can be parallelized. Without the home only proto-
col, the performance is saturated over 16 nodes because
of heavy traffic. The broadcast protocol is effective also
over 16 nodes. The right figure shows the speedup ratio of
FFT. “Orig” means the execution of the original SPLASH-
2 code. In FFT, the code restructuring ofTranspose
and protocol selection raise the maximal speedup ratio from
1.49 to 18.1.

In Figure 5, we show speedup ratio of the programs
with compiler optimization and protocol selection. Because
of the low overheads of our runtime system and the uti-
lization of the communication bandwidth, Raytrace, LU-
Contig, Water-Ns, and Water-Sp show high speedup ratios
and a good scalability. Both in Radix and FFT, an appropri-
ate protocol selection is crucial for scalability. The perfor-
mance of Barnes is saturated over 32 nodes. In Radix and
Barnes, the principal overhead is synchronization because
of the problem decomposition. Only Ocean slows down
owing to the page fault handling which is an overhead of
the runtime system. This is mainly because of the small
size of the problem. As a whole, both compiler optimiza-
tion and appropriate protocol specification are essential for
scalability of the input problem.

5. Related Work

The computation power of recent machines enables the
application of interprocedural analysis to practical prob-
lems (e.g. interprocedural points-to analysis[14, 31], in-
terprocedural array dataflow analysis[17], and interproce-
dural partial redundancy elimination[2]). So far, these ad-
vanced analyses have not been used for explicit parallel
shared memory programs.

Existing research about cooperation between optimizing
compilers and software DSM can be divided in three kinds.
The first is that a parallelizing compiler targets software
DSM[21, 13, 24]. For parallelizable programs, the com-
piler can use precise communication information. Message
vectorization is applicable to regular communication. The
compiler can use code generation techniques for inspec-
tor/executor mechanism. Software DSM does not require
complex code generation for multi-level indirection. The
runtime library has the benefit of message vectorization,
synchronization messages, and support for sender initiated
communication. However, this policy is only applicable to
automatically parallelizable programs.

The second is that a programmer declares shared data
and association between data and synchronization[3, 10, 30,
6]. The programmer can select appropriate protocols for
each data. The runtime system can utilize application spe-
cific information. Since this model hides a memory model
from users, the system does not suffer from false sharing.
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Figure 5. Speedup ratio up to 16 nodes (left) and up to 128 nodes (right)

However, the message packing/unpacking mechanism must
be implemented efficiently. Users also have to adjust paral-
lel programs to the provided programming model.

The third is that a compiler directly analyzes a shared
memory program. Our system and Shasta[29] are classi-
fied in this kind. The Shasta compiler uses two optimizing
techniques to reduce software overheads. One is a special
flag value which indicates that the content is invalid. If the
loaded value is not equal to the flag value, we know that the
content is valid without using the page table checking. The
other is batching to combine multiple checking for the same
entry of the directory. These optimizations are intraproce-
dural. Since they do not perform loop level optimization,
their system requires both high network bandwidth and low
latency.

6. Summary

We have shown that compiler support enables efficient
software DSM which can utilize communication bandwidth
as much as possible. We designed an interface between a
shared memory program and a runtime library, and estab-
lished a coalescing and redundancy elimination problem of
write commitments. Our framework enabled applying inter-
procedural optimizations to a shared memory program. We
have described the interprocedural optimization scheme and
an efficient implementation of the runtime system. We have
shown that the appropriate write protocol selection is one

important application specific information for the efficient
software DSM.

The redundancy elimination scheme in this paper de-
creases the number of write commitment as much as pos-
sible and makes the size of the write commitment as large
as possible. Therefore, it issues write commitments as late
as possible. This policy is suitable for the runtime system
on AP1000+, since AP1000+ has a fast communication net-
work. However, this is not always optimal, especially on
machines with slower communication facilities. Our future
work is to reflect this tradeoff of the platform into dataflow
equations.
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