Resource Management Methods for
General Purpose Massively Parallel OS
SSS—-CORE

Yojiro Nobukuni, Takashi Matsumoto, Kei Hiraki

Department of Information Science, Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-Ku, Tokyo 113, Japan

Abstract. We propose two resource management methods; a scheduling
policy that reflects resource consumption states and a memory-replacement
strategy based on page classification under distributed shared memory
architecture. The performances of the two mechanisms are evaluated by a
probabilistic simulation. An instruction-level simulator simulates variety
of process sets with finite resources on proposed resource-management
methods. The results show the superiority of the proposed resource man-
agement mechanisms.

1 Introduction

NUMA architecture [10, 1] is widely accepted as basic architecture for very high-
performance computers because huge systems can be built by simply connecting
many pairs of processing elements and local memories.

Current parallelizing methods for on NUMA systems [11, 2, 8] and optimiza-
tion techniques for parallel applications[12, 7] optimize execution of a single
parallel application on a fixed system configuration. Therefore, running multiple
parallel applications with competing resource allocation in general-purpose en-
vironment is much less efficient than that is expected. Dynamic partitioning of
parallel system is a necessary feature of a general-purpose parallel systems but
it may further reduce the performance. Operating system level optimization is
required to coordinate resources to run each process efficiently.

We propose two resource management mechanisms for efficient running of
multiple parallel processes. One is a process scheduling mechanism that utilizes
information on physical page usage. The other is a memory replacement mecha-
nism based on page attribute used for distributed-shared-memory management.
The performances of these mechanisms are evaluated by detailed probabilistic
simulation.

Previous operating systems[5, 9] that allowed gang scheduling with dynamic
repartitioning did not use resource informations and has limited scheduling flex-
ibility. DHC[4] designed for UMA uses management structure close to ours but
only uses load informations[3].

Section2 describes the resource management mechanisms. Section3 shows
outline of an operating system, SSS — CORE and proposes scheduling polisies

and page replacement policies. The methodology and the results of the simulation
are given in sectiond and 5 respectively. We conclude in section6.

2 Resource Management Mechanism

2.1 Scheduling Policy

Resource Management Tree To take resource consumption state into schedul-
ing policy, resource related information must be managed. Our approach is to
construct a data structure called resource management tree (RMT) to maintain
system-wide resource usage and each process’s resource consumption state.

RMT is hierarchically structured to be scalable. In addition, variants of par-
allel systems can be supported by adopting real structure of RMT to each spe-
cific systems, from workstation clusters to parallel super computers with flat
networks. Scheduling decisions based on the structure naturally reflects the dis-
tances and hence the access costs between distributed resources. RMT has fur-
ther advantages. It reduces the quantity of required physical resource for storing
resource information. Bottlenecks of accessing the information is avoided.

Each node of the resource management tree logically holds information for
resources seen below the node. They are number of processors and physical pages,
number of total free processors and physical pages, and number of processors,
physical pages and ID of each process. The root node additionally has priority,
scheduling constraints and home node of each process. Figure 1 shows an example
image for a four processor system with RMT.

total #pe, #pg

root free #pe, #pg

level 2 process queue
ID, priority
constraints
homenode b
Ievel 1 total #pe, #pg

#pe: number of processors - -

total #pe, #pg
#pg : number of pages

free #pe, #pg

list of process info
D B Memory pages of process A

total #ipe | @ @ @ | | Il Memory pages of process B
total #pg [Memory pages of process C

level O

processors

memories . i E D

Fig. 1. Resource Management Tree

A process can gain performance by freely using allocated resources and by
making the use of application level optimization. This can be done by using 2-
level scheduling. The kernel allocates resources to each process by looking into
the resource management tree. This way, resources that most fit for the use of a
process can be allocated. The resource allocation within a process is left to user
level scheduler, which freely re-allocate resources into internal threads.

Scheduling Constraints A parallel optimizing compiler[12] generally assumes
that system resources are used by a single application. Our goal is to run ob-
ject codes efficiently in a multiple user/multiple process environment. In such
an environment, a process can achieve higher speedup when allocated resources
satisfy its requirements and preferences. Scheduling constraints are used by pro-
cesses to specify these informations to the kernel. The kernel follows the given
constraints so that the requirements of a process can be satisfied as much as
possible.

A process can use scheduling constraints to specify its requirements of and
preferences for the number of processors to use, communication cost between
processors, memory access costs, and process migration. The fized processors
constraint expresses a constant number of processors a process requires. The
variable processors constraint enables a process to be allocated variable number
of processors.

Priority Computation Since resources are allocated to satisfy each process
requirements, a mechanism must be arranged to coordinate fair sharing of re-
sources. Fairness can be achieved by managing priorities according to the amount

of used resources and strength of given scheduling constraints and scheduling in
priority order. Aging priorities according to these terms realizes fairness.

Priority is based on following values; (1)amount of used resources: U,., (2)strength

of scheduling constraints: R., (3)degree of constraints satisfaction: S, = 0 or 1,
(4)amount of wasted resources: W,., (5)presence of waiting process: f,, =0 or 1
The aging value of a process is computed from next expression.

aging = (UyR.Se + W) fu xt — C.(1 — t)

Smaller the value, higher the priority. C, is the aging coefficient. To prevent pri-
ority values to divert, the sum of the aging values of processes that were running
before the time slice is equally divided and distributed to waiting processes.

2.2 Memory Replacement Strategy

Under general environment where multiple processes execute simultaneously, sys-
tem must be designed to bear situations when physical memories are exhausted.
Selecting victim pages from those that are less frequently accessed and have less
re-reference cost will enhance system performance.

Pages that belong to the currently running process are usually more refer-
enced. Generally, local pages are more referenced than those shared by threads.
Suppose a shared copy page has been replaced, it can be obtained with small
cost through network from remote cluster. However, replacing pages that invoke
disk accesses on re-reference can be a source of slow down.

3 SSS-CORE

The mechanisms proposed in the paper are planned to be built into an oper-
ating system called SSS—CORE. The performance of the resource management
mechanisms introduced are evaluated by simulating system with SSS-CORE.

SSS—-CORE][6] is a general purpose massively parallel operating system for
NUMA parallel distributed systems. It provides multiple user/multiple job en-
vironment with timesharing and space partitioning. The main objective of SSS—
COREis achieving maximum performance from each parallel application.

SSS—-CORE provides a mechanism that allows information transfer between
kernel and user level as described in the previous section. The information in-
cludes those used by the resource management mechanisms, e.g. usage of physical
pages and number of processes on each node.

3.1 Scheduling Policy

The performances of five kernel-level scheduling policies are compared through
evaluation. Every policy computes process priorities according to resource con-
sumption state at each time slice and schedules processes with highest priorities.
Processors are looked for within a particular area and allocated to a process if
sufficient number of processors are found in the are. The policies are described
below.

Policy0 allocates randomly selected requested number of clusters

Policyl allocates requested number of continuous clusters in a fixed order

Policy2 first allocate clusters in home-node area where pages of target process
exist, then clusters in whole area will be tried on failure.

Policy3 same as Policy2, but only home-node area is tried

Policy4 same as Policy3, but clusters that actually has target process’s pages
are allocated

The home-node of a process represents a subtree of the resource management
tree that includes its requested number of processors. It somewhat corresponds
to the area where the process was previously scheduled. Figure 2 gives a home-
node example. Process A in the figure, which has pages at marked clusters in
area4, takes a node as its home-node which represents the subtree in area3.
Area3 is called home-node area of process A.

Policy2, 3, 4 use resource management tree. The difference among these
three policies is in how much they persist in allocating processors from clusters
where process’s currently using physical pages are located. The difference is in the
action taken when sufficient number of processors cannot be prepared by those
clusters. Policy?2 looks for processors for all clusters. Policy3 tries to allocate
from clusters in home-node area; the subtree below the home-node of target
process. Policy4 gives up scheduling the target process. Figure 2 shows the area
where each of policies look for processors to allocate. Area 2, 3, 4 corresponds
to the area for Policy2, 3, 4 respectively. Policy4 mostly schedules a process

process A’'s
Home Node

B Memory pages of process £

Fig. 2. Scheduling Target Area

to the same processors time to time. Chances that processes will be scheduled
to clusters where they hold physical pages are greater in Policy4, 3, 2 order.
More processors may be utilized in reverse order.

Defining as many user-level schedulers as the number of processes to simulate
is not possible. A single policy is defined and used by all processes. It schedules
the identical threads to the processors that were also allocated to the process at
previous allocation by the kernel level scheduler.

O1
3\
2 thread ID

O
O ™ allocated area

|
N+1 Schedule Time

Fig. 3. An Example of User Level Scheduling

Figure 3 shows an example of thread scheduling. In the example, proces-
sors that are allocated to the process by (N + 1)st scheduling as well as (N)th
scheduling will run threads 3 again. Processors that are newly allocated to the
process at (N + 1)st scheduling will run remaining threads (threads 0, 1, 2) in
thread ID order. When thread is scheduled to different clusters, its local pages
must be transferred through the network. Distributed shared memory system is
responsible for properly transferring the shared pages of the thread. Clearly, the
more overlaps in allocation area, the lesser the amount of page transfers.

Note that when time quantum is sufficiently larger than the time required
for context switching, required time for computing scheduling itself is relatively
small. SSS—CORE will use larger value for time quantum. The time required for

scheduling is ignored in the simulation.

3.2 Page Replacement Strategies
Two page replacement strategy is evaluated and compared with each other.

Strategy0 Simple LRU without page classification
Strategyl Uses page class. Processes are scanned in reverse priority order.

Assuming distributed shared memory system, memory pages can be classified
into 6 groups by pointing whether a page; (a) belongs to currently running
process or not, (b) is shared page or local page, and (c) has other copy pages or
not. The page classes for Strategyl are; (1) copy page of not running process,
(2) copy page of running process, (3) last one page of not running process, (4)
local page of not running process, (5) last one page of running process, and (6)
local page of running process. “Last-one” page in the list means a shared page
without any copy thus requires a disk access on next access. Ordering between
classes 4 and 5 cannot be given trivially. Class 4 is prior to 5 in the list to
maximize the efficiency of currently running process.

Since processes are scheduled in priority order, pages of lower priority pro-
cess are possibly less referenced. Strategyl utilizes this characteristic. Both
strategies will not select coherency processing shared pages as the victim page
for replacement.

Table 1. Process set for simulation

Process||Number Parallelism Total local shared| VR ratio Sync
set of (Processes with the paralle|mem size|mem size Interval
proc’s same parallelism) lism| [pages] [pages]|[VR ratio] [clocks]
A 12 16,36,48,50(2),64,70 1050 35500 10120 1.00 10000-20000
96,100,128,192,200
K 12 48(5),96(5),208,256 1184 49920 6360 1.30 10000
L 11 64(5),128(2),192(2),256(2)| 1472 68480 7280 1.68 10000
M 23 16(16),50(6),256(1) 812 35480 30320 1.70 10000

Table 2. Parameters and Costs

|| Parameters || Values ||
Number of processors 256
Average memory access interval 10 clk
Disk access cost 100000 clk
Page transfer startup cost 500 clk
Communication startup cost 50 clk
Pages per cluster 400 pages
Page size 4096 Byte
Total memory 409.6 Mbyte
1 quantum 1000000 clk

4 Simulation Model

Operating system level simulation of parallel architecture by highly detailed
model is practically impossible. Executing a particular suite of applications on
the simulator is not sufficient for evaluating a general purpose operating environ-
ment. Therefore, even instruction level simulation does not fit for the objective.
We use a detailed probabilistic model for simulation. Probabilistic model is good
for simulating variety of processes. However, a stream of process activities cannot
easily be given the meaning from program point of view.

A pair of a processor and a memory constructs a cluster. Clusters are con-
nected by tree structured doubly linked interconnecting network. The value a
message actually takes for moving one-hop is computed from basic transfer cost
of each type of messages and the bandwidth of the network connection where it
is passing.

A process has as many number of threads as the number of processors it
requests. It uses the fized number of processors scheduling constraint , and thus
its parallelism never changes through its life time. Threads here denotes the
execution context of a parallel process at a cluster. A thread of a process has
own local memory space and a shared memory space shared among threads of
the process. Both memory spaces are provided with reference frequency tables
that describe how frequently each page of the space is accessed.

Pages of shared space are managed by distributed shared memory system.
Sequential consistency memory model with an update protocol is used. Every
write access starts update processing by sending update messages to every copy.
The processor stops until it collects all acknowledges. To model NUMA systems,
memory access cost and basic communication costs are set as to satisfy "local
access < inter-cluster access< disk access”. When threads change clusters on
which it executes, its local pages are moved on-demand through network. Shared
copy pages that do not reside on currently allocated clusters are removed without
any cost. Accesses to unloaded virtual pages will cause disk accesses.

Process execution is clock-based probabilistic model. Processes make mem-
ory reference actions at each clock if possible. With given interval of effective
execution clocks, randomly selected threads of a process synchronize by a simple
barrier. Effective execution means the time or clocks spent for other than waiting
for synchronization to complete or for memory access processing to end.

5 Simulation Results

The parameters used in simulation are shown in Table 2. System with as many
as 256 processors is evaluated. The topology of the network is three and four
leveled tree structure. The former expands at root level into 4-way, then 8-way,
and 8-way at the bottom level (w488). The latter expands 4-way at each level of
the network(w4444). Table 1 describes the sets of parallel processes simulated.

Each experiment is carried on until one of the processes in a set stops exe-
cution or 100 time slices has passed. The results are shown in Figure 6, 4, 6 and

6. Graphs on the left columns are results of w488 system, and on the right are
of w4444 system.

Each group in a graph is the results of scheduling Policy0 through Policy4.
Three left bars of a group are the results of Strategy0 and the others are of
Strategyl. Three evaluated values are plotted; (1)net effective execution rate,
(2)calibrated effective execution rate. (3)maximum effective execution rate, and
(1) is total efficiency of processors when processes are scheduled. Idle processors
to which no processes are scheduled are not included. All processor idle times
are accumulated to (3) and (2) is computed by following expression, (1) * (1.0
+ idle time rate). Processor idle times are accumulated with the ratio of net
effective execution rate.

5.1 Kernel Level Scheduling

Policy4 shows the best performance even when compared by net effective exe-
cution rate, which is disadvantageous for Policy4 because processor idle times
are not included. When compared by other evaluations, the difference becomes
larger. On real systems, processor idle time can be reduced by following two
methods.

1. using variable number of processor scheduling constraint (will be introduced
to SSS—CORE), processors can be flexibly utilized for number of processors.

2. un-allocated spaces caused by scheduling oriented processor fragmentation
can be utilized by another process not included in a particular set of pro-
cesses.

In case 1, the calibrated performance can generally be expected because processes
will utilize the newly allocated processor space by variable number of processor
scheduling constraint as much efficiently as they used the same space when al-
located by fized number of processors scheduling constraint. When an additional
process is assumed for a particular set of processes, it can use the processors
in formerly fragmented space as much efficiently as maximum effective execu-
tion rate, depending on its characteristics as a parallel process. Thus maximum
effective execution rate can be expected for case 2. Evaluating cases for vari-
ant process sets other than those experimented is inevitable and important for
describing the performance of general purpose operating system and prospect-
ing how the performance of SSS—CORE will be. Comparison by calibrated or
maximum effective execution rate is validated from this point of view.

Policy4 is the best in efficiency by any of the three estimations. The quantity
of page transfer is larger among Policy2, 3, 4 in the order. Table 3 shows that
the time spent in synchronization or communication get larger for policies in
the same order. Changing processor allocation space time to time cause each
memory to be filled with pages from many processes (Disk acssessing time is
not included). When Policy2 or Policy3 is used, processes scramble for the
physical pages and result in lower in efficiency than Policy4.

5.2 Memory Replacement Strategies

Strategyl always outperforms Strategy0. Table 4 is the breakdown of replaced
counts for each class of pages. Results of the scheduling Policy4 on w488 system
is shown.

As for Strategyl, mostly copy pages are replaced. Process sets A and K,
which impose small physical memory requirement, see only copy pages of not
running processes victimized. But for Strategy0, local pages and last-one shared
pages are replaced.

The results show that selecting victim pages according to the classification
enhances system performance. Even when the system is somewhat highly loaded,
efficiency is preserved by not kicking local pages that are more frequently refer-
enced out of memory.

5.3 Considerations on Realizability of General Environment

Maximum efficiencies of the results are roughly between 65% to 85% for the
experiment of scheduling policy Policy4 and Strategyl replacement strategy
pair. The lower results come from sequential consistency memory model. The
time waiting for preceding accesses to complete is very large. Update processing
time is not very large compared to the waiting time. Cooperating more relaxed
memory model and lighter consistency managing system solves the problem.
In addition, performances of parallel applications with large shared access fre-
quencies can be enhanced with various compilation techniques and by intro-
ducing useful communication techniques, such as hierarchical multicasting and
acknowledge combining. Thus, lower simulation results does not negate general
environment on parallel distributed system.

6 Conclusion

The paper has described kernel level scheduling policy that uses information of
resource consumption state and memory replacement strategy that uses page

Table 3. Execution Time Breakdown (%) Table 4. Replaced times for each class of

(w488, Strategyl replacement) pages(Policy4, w488)
|Se‘1 Type ||alg00|a1gol|a1g02|alg03|algo4| Page [Proc Page Class

Max [157.89]57.36160.41]64.22184.02 Replace |Sets |[other’s| owx;‘other’sother’s own| own|
A | Sync [|19.98]19.59|20.84|20.03|12.45 Strategy copy| cop; last| local| lastllocall

Comm [(22.10(23.01|18.72|15.70| 3.49 A 10944 4770, 723 4763 3031130
Max ||42.65|56.57(59.53|59.53|74.91 K 3310510487 830 22598 653803

K | Sync [|25.87|22.08(23.24(23.24(17.82 Strategy| L 92253|18063 4911| 63885 1369978
Comm [|31.46(21.32|17.20|17.20| 7.22 0 M 46394[23581| 6873 1172540546577
Max ||38.81|48.93(54.98|54.98(65.85 A 38976 0 0 0 0 0

L | Sync [|28.52|24.07|23.58|23.58(22.23 K 77665 0 0 0 0 0
Comm [(32.64(26.96|21.39|21.39|11.87 Strategy| L |{414287] 0 0 0 0 0
Max ((24.79(35.73|47.42161.47|64.37 1 M ||1245705(11578] 0 0 0 0

M | Sync ||22.83]19.03|18.68|16.57|16.06
Comm [|52.36(45.21|33.86|21.90|19.51

classification upon distributed shared memory system. The performances of var-
ious methods for these mechanisms are evaluated by simulating on detailed prob-
abilistic model.

As for the kernel level scheduling, the simulation results showes the superi-
ority of those policies that use resource management data structure and allocate
processors of clusters with memory affinity to a process. Replacing pages accord-
ing to the page classification is found much superior than replacement policy by
simple LRU order without the classification. When these two mechanisms are
in-cooperated together, the effective execution rate of the system is higher than
65% for highly loaded cases.

Acknowledgement

The work is supported by IPA Advanced Information Technology Program (AITP)
of Information-technology Promotion Agency (IPA), Japan.

References

1. Intel Supercomputer Systems Division. Paragon User’s Guide, order number
312489-003 edition, June 1994.

2. F. Douglis and J. K. Ousterhout. Process Migration in Sprite Operating System.
Proc. of the 7th Inter. Conf. on Distributed Computer Systems, September 1987.

3. D. G. Feitelson. Packing schemes for gang scheduling. In Proc. IPPS’96 Workshop
on Job Scheduling Strategies for Parallel Processing, pages 54—66, April 1996.

4. Dror G.Feitelson and Larry Rudolph. Distributed Hierarchical Control for Parallel
Processing. IEEE Computer, 23(5):65—77, May 1990.

5. B. C. Gorda and E. D. Brooks III. Gang Scheduling a Parallel Machine. Technical
Report UCRL-JC-107020, Lasrence Livermore NL, December 1991.

6. T. Matsumoto, S. Huruso, and K. Hiraki. General Purpose Massively Parallel Op-
erating System SSS—-CORE. Proceedings of 11th Japan Society for Software Science
and Technology, pages 13—16, October 1994. (in Japanese).

7. Takashi Matsumoto. Synchronization mechanisms and processor scheduling on
multiple processors. [PS Japan SIG report, pages 1-8, November 1989. (in
Japanese).

8. Takashi Matsumoto. Elastic barrier: Generalized barrier synchronization mecha-
nism. Trans. of IPS Japan, 32(7):886-896, July 1991. (in Japanese).

9. J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: an experimant in dis-
tributed operating system structure. Comm. ACM, 23(2):92-105, February 1980.

10. J. Palmar and Jr. G. L. Steele. Connection Machine model CM-5 system overview.
4th Symp. on Frontiers Massively Parallel Comput., pages 474-483, October 1992.

11. T.E.Anderson et al. Scheduler activations: Effective kernel support for the user-
level management of parallelism. Proc. of the 13th ACM Sympo. on Operating
Systems Principles, 25(5):95-109, October 1991.

12. R. P. Wilson and et al. SUIF: An Infrastructure for Research on Parallelizing and
Optimizing Compilers. ACM SIGPLAN Notices, 29(12):31-37, December 1994.

Efficiency (%)

Efficiency (%)

Set A (W488) Set A (W4444)

100.0 100.0

Net, Strategy0 Net, Strategy0
Cal, Strategy0 Cal, Strategy0
Max, StrategyO Max, Strategy0
Net, Strategyl Net, Strategyl
80.0 | Cal, Strategyl 80.0 Cal, Strategyl
Max, Strategyl Max, Strategyl
A <
60.0 M S 600 M
M <
4 H > -
[S]
c
2
o
40.0 E 400
L
20.0 20.0
0.0 0.0
0 1 2 3 4 0 1 2 3 4
KLS KLS
Fig. 4. Results of Process Sets A w488(Left), w4444(Right)
Set K (W488) Set K (W4444)
100.0 100.0
Net, Strategy0 Net, Strategy0
Cal, Strategy0 Cal, Strategy0
Max, StrategyO Max, Strategy0
Net, Strategyl Net, Strategyl
80.0 | Cal, Strategyl 80.0 Cal, Strategyl
Max, Strategyl Max, Strategyl
<
60.0 | S 600
<
> I
[S]
c
2
. ©
40.0 E 400
L
20.0 20.0
0.0 0.0
0 1 2 3 4 0 1 2 3 4
KLS KLS

Fig. 5. Results of Process Sets K w488(Left), w4444(Right)

Efficiency (%)

Efficiency (%)

100.0

80.0

60.0

40.0

20.0

0.0

100.0

80.0

60.0

40.0

20.0

0.0

Set L (W488)

Net, Strategy0
Cal, Strategy0
Max, StrategyO
Net, Strategyl
Cal, Strategyl
Max, Strategyl

Fig. 6. Results of Process Sets L w488(Left), w4444 (Right)

Set M (W488)

KLS

Net, Strategy0
Cal, Strategy0
Max, StrategyO
Net, Strategyl
Cal, Strategyl
Max, Strategyl

1

Fig. 7. Results of Process Sets M w488 (Left), w4444 (Right)

2
KLS

Efficiency (%)

Efficiency (%)

100.0

80.0

60.0

40.0

20.0

0.0

100.0

80.0

60.0

40.0

20.0

0.0

Set L (W4444)

Net, Strategy0
Cal, Strategy0
Max, StrategyO
Net, Strategyl
Cal, Strategyl
Max, Strategyl

|

KLS

Set M (W4444)

Net, Strategy0
Cal, Strategy0
Max, StrategyO
Net, Strategyl
Cal, Strategyl
Max, Strategyl

KLS

